OpenCV

OpenCV is an open-source computer vision and machine learning software library, aiming at providing a common infrastructure for accelerating the design of CV applications. OpenCV library provide basic tools for building CV applications, building on over 2500 optimized algorithms, including state-of-the-art computer vision and machine learning algorithms for a panoply of applications. Detecting and recognizing faces, classifying human actions in videos, track camera movements and moving objects, extracting 3D models of objects, producing 3D point clouds from stereo cameras, removing red eyes photos, following eye movements are just a few examples.

Introduction

This document aims at introducing the concept of Computer Vision and some basic functionality of the OpenCV – Open Source Computer Vision Library, through a few illustrative examples building on its C++ libraries.
In broad terms, Computer Vision comprises data acquisition (involving still images or video stream, sometimes mixed with audio), data compression, processing and classification, towards a (computer-based) decision or a new representation of the data. Note that Computer Vision relies on a binary representation of the data.

OpenCV has C++, Python, Java and MATLAB interfaces and supports Windows, Linux, Android and Mac OS. In this case, C++ was opted to create the colour histogram of an image.

Instalation

The installation is based on Debian 9 (Stretch), but should work in any other Debian-based OS. Firstly, do:

    sudo apt update
    sudo apt install build-essential
    sudo apt install cmake git libgtk2.0-dev pkg-config libavcodec-dev libavformat-dev libswscale-dev
    sudo apt install libopencv-dev python3-opencv

We also need to compile the library from source:
wget -O opencv.zip https://github.com/opencv/opencv/archive/4.x.zip
Then unzip it and create a build directory, and inside do:

    mkdir build
    cd build
    cmake -D OPENCV_GENERATE_PKGCONFIG=YES "../opencv-4.x/"
    make -j$(nproc)
    sudo make install
    sudo ldconfig

When compiling the C++ programs use:

    g++ test.cpp -o teste `pkg-config --cflags --libs opencv4`

Example 1: Loading an image file and visualizing it on screen

For this the program loads an image through a path and opens a window named program1, outputting the image:

    #include “./opencv-4.x/include/opencv2/opencv.hpp”
    #include <iostream>
    
    using namespace cv;
    
    int main(int argc, char ** argv) {
      Mat img = imread(argv[1], -1);
      if (img.empty()) return -1;
      namedWindow("Program1", cv::WINDOW_AUTOSIZE);
      imshow("Program1", img);
      waitKey(0);
      destroyWindow("Program1");
      return 0;
    }

The image is loaded for the “img” Mat-type structure, using the imread() function, on the line Mat img = imread(argv[1],-1). This is a high-level function that automatically assigns the file type, according to the file extension (the file name is input as the first argument (argv[1]) and allocates the required memory space (for the image data structure). The second argument enables to define the image format: “-1” for unchanged (as is); “0” for grayscale; “1” for colour). In this case (“-1”), the input image is not modified. The imread() function returns a pointer that will be used for manipulating the image and the corresponding data.
The NamedWindow() function opens a new window with the name on first argument and defines the properties of the window: cv::WINDOW_AUTOSIZE will open the window with the same dimentions as the image.
The waitKey() function pauses the execution of the program, until the user presses a key. The argument defines the “waiting deadline” (ms), that since it is “0”, it waits indefinitely.
Finally, the destroyWindow() function closes the window and frees the memory.

Example 2: Loading a video file and visualizing it on screen

Loading a video is very similar to loading an image, but we need a loop to read each frame of the stream. The example builds on the “highgui” and “imgproc” libraries:

    #include "./opencv-4.x/modules/highgui/include/opencv2/highgui.hpp"  
    #include "./opencv-4.x/modules/imgproc/include/opencv2/imgproc.hpp"

    int main(int argc, char ** argv) {
            cv::namedWindow("Program2", cv::WINDOW_AUTOSIZE);
            cv::VideoCapture cap;
            cap.open(argv[1]);
            cv::Mat frame;
            for (;;) {
                    cap >> frame;
                    if (frame.empty()) break;
                    cv::imshow("Program2", frame);
                    if ((char)cv::waitKey(33) >= 0) break;
            }
    return 0;
    }

The cv::VideoCapture cap creates an instance (cap object) of the cv::VideoCapture class, which will store all data from the input file.
The for loop enables the storage of every fream in the structure and outputs to the screen. The cap >> frame instruction stores the current “reading” status of cvCapture.

After each frame, there is a waiting time of 33 milliseconds, for a 30 fps rate.

Example 3: Selecting a specific video frame and visualizing it on screen

For this we will have a slider that will control the frame output on the screen:

    #include "./opencv-4.x/modules/highgui/include/opencv2/highgui.hpp"  
    #include "./opencv-4.x/modules/imgproc/include/opencv2/imgproc.hpp"
    #include <iostream>
    #include <fstream>
    using namespace std;
    
    int g_slider_position = 0;
    int g_run = 1; // = 1 is “Single Step” mode, 1 frame at a time
    int g_dontset = 0;
    cv::VideoCapture g_cap;
    
    void onTrackbarSlide(int pos, void * ) {
            g_cap.set(cv::CAP_PROP_POS_FRAMES, pos);
            if (!g_dontset) g_run = 1;
            g_dontset = 0;
    }
    
    int main(int argc, char ** argv) {
            cv::namedWindow("Program3", cv::WINDOW_AUTOSIZE);
            g_cap.open(argv[1]);
            int frames = (int) g_cap.get(cv::CAP_PROP_FRAME_COUNT);
            int tmpw = (int) g_cap.get(cv::CAP_PROP_FRAME_WIDTH);
            int tmph = (int) g_cap.get(cv::CAP_PROP_FRAME_HEIGHT);
            cout << "Video has " << frames << " frames of dimensions(" << tmpw << ", " << tmph << ")." << endl;
            cv::createTrackbar("Position", "Program3", & g_slider_position, frames, onTrackbarSlide);
            cv::Mat frame;
            for (;;) {
                    if (g_run != 0) {
                            g_cap >> frame;
                            if (frame.empty()) break;
                            int current_pos = (int) g_cap.get(cv::CAP_PROP_POS_FRAMES);
                            g_dontset = 1;
                            cv::setTrackbarPos("Position", "Program3", current_pos);
                            cv::imshow("Program3", frame);
                            g_run -= 1;
                    }
                    char c = (char) cv::waitKey(10);
                    if (c == 's') {
                            g_run = 1;
                            cout << "Single step, run = " << g_run << endl;
                    }
                    if (c == 'r') {
                            g_run = -1;
                            cout << "Run mode, run = " << g_run << endl;
                    }
                    if (c == 27) break;
            }
            
    return(0);
    }

The global variable g_slider_position and g_run are defined at the beginning. The g_run is used by a kind of state machine, as follows:
g_run = 0 : Runs in “Idle” mode, waiting for key input
g_run = 1 : Enters mode Single Step, moving 1 frame ahead
g_run = -1 or g_run < 0 : Enters mode Run, presenting the video at 100 fps, until it reaches the end.

The int g_dontset = 0 global variable assignment guarantees that the program just changes to state 1 when the slider is moved (dragged) using the PC mouse.

Finish this SOON!

Example 4: Applying a Gaussian blur filter to an image

This program takes an input image and filters it out, producing an output image. Both are 3 channels (RGB) and 8 bits per channel:

    #include "./opencv-4.x/include/opencv2/opencv.hpp"
    
    using namespace cv;
    
    int main(int argc, char ** argv) {
            Mat image_original = imread(argv[1], -1);
            namedWindow("Program4_image_original", WINDOW_AUTOSIZE);
            imshow("Program4_image_original", image_original);
            Mat image_filtered;
            namedWindow("Program4_image_filtered", WINDOW_AUTOSIZE);
            GaussianBlur(image_original, image_filtered, Size(5, 5), 3, 3);
            imshow("Program4_image_filtered", image_filtered);
            waitKey(0);
            return(0);
    }

Example 5: Converting a video into grey-scale and storing it

This program converts an input video into a grey-scaled video. The arguments define the name of the original video and the output to be created.

    #include "./opencv-4.x/include/opencv2/opencv.hpp"
    #include <iostream>
    
    int main(int argc, char * argv[]) {
            cv::namedWindow("Example5", cv::WINDOW_AUTOSIZE);
            cv::namedWindow("Gray_imgr", cv::WINDOW_AUTOSIZE);
            cv::VideoCapture capture(argv[1]);
            double fps = capture.get(cv::CAP_PROP_FPS);
            cv::Size size((int) capture.get(cv::CAP_PROP_FRAME_WIDTH), (int)capture.get(cv::CAP_PROP_FRAME_HEIGHT));
            cv::VideoWriter writer;
            writer.open(argv[2], CV_FOURCC('M', 'J', 'P', 'G'), fps, size);
            cv::Mat gray_frame, colour_frame;
            
            for (;;) {
                    capture >> colour_frame;
                    if (colour_frame.empty()) break;
                    cv::imshow("Example5", colour_frame);
                    cv::cvtColor(colour_frame, gray_frame, CV_RGB2GRAY);
                    cv::imshow("Gray_imgr", gray_frame);
                    writer << gray_frame;
                    char c = (char) cv::waitKey(10);
                    if (c == 27) break; // allow the user to exit using the Escape key
            }
            capture.release();
    }